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ON AN ADAPTIVE ESTIMATOR OF THE LEAST CONTRAST 
IN A MODEL WITH NONLINEAR FUNCTIONAL RELATIONS

A. G. Kukush1  and  S. Zwanzig2 UDC  519.21

We consider an implicit nonlinear functional model with errors in variables.  On the basis of the
concept of deconvolution, we propose a new adaptive estimator of the least contrast of the re-
gression parameter.  We formulate sufficient conditions for the consistency of this estimator.
We consider several examples within the framework of the  L1- and  L2 -approaches. 

The aim of the present paper is to construct consistent estimators for the regression parameters in an im-
plicit functional error-in-variables model.  In this model, an increase in the number of observations leads to an
increase in the number of nuisance parameters for a fixed number of estimated parameters.  It was established
long ago that standard procedures of estimation are inapplicable to such models [1].  In linear models, the least-
squares method gives consistent and efficient estimates for regression parameters.  In the nonlinear case, such
estimates are inconsistent. 

1.  Adaptive Estimators of the Least Contrast

Consider a model with implicit functional relations 

G i( ),ζ β0   =  0,      i  =  1, … , n, (1)

where  ζi
sD∈ ⊂ R ,  ζ ζ ζ ζ= = … ∈( ) , ,( )n Dn

n
1   is a deterministic nuisance parameter,  β0   is the regression

parameter belonging to a compact set  B p⊂ R ,  and  G D B: × → R  is a given function.  One observes  s-di-
mensional vectors 

Zi   =  ζ εi i+ ,      i  =  1, … , n , (2)

where  εi   are independent and identically distributed and, furthermore, 

E ε 1  =  0      and      E ε1
2  <  ∞.

A model with explicit functional relations is involved in (2) for  s ≥ 2,  ζ i = ( );ζ ζ1 2i i ,  ζ1i ∈R ,  ζ2
1

i
s∈R – ,

and  G i( ),ζ β0  = ζ ζ β1 2 0i ig– ,( ).  Then the observations  Zi  = ( ; )y xi i   obey the classical explicit model 

( ; )y xi i   =  ( ( ) ), ; ( ; )g i i i iξ β ξ ε ε0 1 2+ (3)
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with unknown deterministic points of a plan 

ξi
sF∈ ⊂ R –1,      i  =  1, … , n .

For the implicit model (1), we introduce the function of contrast dependent on the independent nuisance pa-
rameters. 

The function  C D Bn
n: × → +R ,  n  =  1, 2, … ,  is called a contrast for  β  at a point  β0   if, for a certain

strictly increasing function  ρ: R R+ +→ ,  ρ  ( 0 ) = 0,  the following separability condition is satisfied: 

(i) ∃ ≥n0 1  ∀ ≥n n0   ∀ ∈β ζ β ζ βB C Cn n: , – ,( ) ( )0 0   ≥  ρ β β– 0( ) . 

In what follows,  Cn  is determined by averaging, namely, 

Cn( ),ζ β   =  
1

1n
c i

i

n

( ),ζ β
=
∑ , (4)

where  c D B: × → +R .  The main problem is to find an estimator for  Cn( ),ζ β   independent of  ζ  and based on
observations (2).  The first idea is to substitute the observations  Z Zn1, ,…   for the nuisance parameters
ζ ζ1, ,… n   in (4).  As a result, one obtains a so-called naive estimator of the least contrast  βnaive ,  and 

βnaive   ∈  arg min , , ;( )
β

β
∈

…
B

n nC Z Z1 .

However, this estimate is inconsistent.  The main idea of the present paper is to propose an adaptive procedure.

We seek a Borel function  q Bs: R R× →   lower-semicontinuous in  β ∈ B  and such that 

∀ ∈ ∀ ∈ =ζ β β ζ βζ1 1 11
D B q Z c: , ,( ) ( )E . (5)

A random vector 

βad   ∈  arg min ,( )
β

β
∈ =

∑
B

i
i

n

n
q Z

1

1
(6)

is called an adaptive estimator of the least contrast for the parameter  β0 . 
A measurable solution of this optimization problem always exists [2]. 
Estimate (6) resembles the Stefanski estimate [3] for the explicit model (3).  Stefanski also used convo-

lution equations of the type (5) for the construction of a test of estimation.  However, this test is based on a con-
sistent procedure of estimation in the classical scheme of nonlinear regression, i.e., in the case where the points
of a plan  ξi   are known.  In [4], Nakamura applied a similar approach to a generalized nonlinear error-in-vari-
ables model.  Buzas and Stefanski [5] extended the method of an adaptive counting function to a broad class of
generalized linear models.  In [6], Hanfelt and Kuung-Yee Liang proposed to use the function of conditional
quasimaximum likelihood in a generalized linear model.  In [7], Fazekas and Kukush considered an adaptive test
connected with the naive least-squares estimator in model (3).  Approach (5), (6) proposed in the present paper is
more general and is based on the contrast  Cn( ),ζ β . 
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To determine  q  from Eq. (5), it is necessary to know the distribution law of the errors  εi .  Only for poly-
nomial models it suffices to know several moments of distribution.  Equation (5) can be explicitly solved only in
certain special cases, namely, for an implicit polynomial model, explicit exponential model, and nonlinear
smooth implicit model with errors distributed according to the Laplace law.  In [3], a solution in the form of a
series is presented for the case of normally distributed errors.  One can also use the method of Fourier transfor-
mation [8]. 

Since Eq. (5) is not always solvable in an explicit form, we need an approximate solution.  A family of

functions  q Bs
µ : R R× → ,  µ > 0,  is called an approximate solution of Eq. (5) if 

∀ >
∈ ∈

µ β ζ β
β ζ

ζ µ0
1

1 1 1: sup sup , – ,( ) ( )
B D

q Z cE   ≤  µ . (7)

Let  qµ   be a Borel function lower-semicontinuous in  β  .  Then an approximate adaptive estimator of the least

contrast  β µ  is defined as a random vector that satisfies the relation 

β βµ
β

µ∈
∈ =

∑arg min ,( )
B

i
i

n

n
q Z

1

1

,      µ  >  0. (8)

2.  Consistency

We introduce the following moment conditions for  q Zi( ), β  : 

(ii) ∃ > ∃ ∈ + ∞ ∀ ∈ ( ) ≤
=
∑C k B

n
q Z q Ci i

k k

i

n
kZ0 1 1 2 1

1

1[ , ) : , – ,( ) ( )
/ /β β βE E ; 

(iii) there exists a random variable  M( )n ,  constant  C,  and real number  k ≥ 1  such that, for all  n  and

β, ′ ∈β B,  we have 

1 2

1
n

q Z q Z q Z q Zi i i i
i

n

( ) ( ) ( ) ( ), – , – , ,β β β βE E′ + ′
=
∑   ≤  M( ) –n β β′ 2

and  EM( )n
k  ≤ C . 

Theorem 1.  Suppose that condition (i) and conditions (ii) and (iii), where  k ≥ 1  is fixed, are satisfied.
Then the following assertions are true: 

(a) if  k > p / 2 ,  then 

∀ > ∀ ≥ >( )τ β β τβ0 1
0 0n : –P ad   ≤  const ⋅ ⋅ +ρ τ– – /( )2 2k k pn  ;

(b) if  k > p / 2 1+ ,  then  β  ad →  β 0  a.s.
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For the functions  q µ  from (7), we consider the following analogs of conditions (ii) and (iii): 

(iv) ∃ > ∃ ∈ ∞ ∃ = > ∀ ≤ ∀ ∈c k k B0 1 01 1 0[ , ) ( )γ γ µ µ β :

1 2 1

1
n

q Z q Zi i
k k

i

n

E Eµ µβ β( , ) – ( , )
/( )

=
∑   ≤  

c k

k k

1

1

/

( )/µγ ;

(v) there exists a random variable  M( , )n µ ,  constant  c,  real number  k ≥ 1,  and  γ 2 = γ 2( )k  > 0  such

that, for all  n  and  µ ≤ µ 0  and every  β, β  ′ ∈ B,  we have 

1 2

1
n

q Z q Z q Z q Zi i i i
i

n

µ µ µ µβ β β β( , ) – ( , ) – , ,( ) ( )E E′ + ′
=
∑   ≤  M( , ) –n µ β β⋅ ′ 2

and  EM( , )n
k

µ  ≤ c kµγ 2 ( ). 

Theorem 2.  Suppose that  µ = µ ( )n  = an r– ,  r > 0,  a > 0,  in relation (8). Also assume that condition (i)

and conditions (iv) and (v), where  k   is fixed and such that  k ≥ 1  and  k = p / 2 + δ ,  δ  > 0,  are satisfied.
We set 

r  =  
2
21 2

k

k k p k p

( – )
( )( – ) ( )

δ χ
γ γ+

 .

Then the following assertions are true: 

(a) if  χ > 0,  then 

∀ > ∀ > 





τ
ρ τ

0
2

1

n
a

r

( )
:

/

    Pβ µβ β τ
0 0( ) –n >( )  ≤  const ⋅ ( )ρ τ χ( ) – – – –an nr k2

;

(b) if  χ > 1,  then  βµ( )n  → β0   a.s. 

3.  Examples

3.1.  Adaptive Least-Squares Estimator in an Explicit Model.  For model (3), we set 

c i( ),ζ β   =  G i
2( ),ζ β   =  g gi i( ) ( ), – ,ξ β ζ β0

2( ) .

Assume that the separability condition (i), where 

ρ( )t   =  at2 ,      t  ≥  0,    a  >  0, (9)

is satisfied.  An adaptive estimator of the least contrast  βlse   is a measurable solution of the optimization prob-
lem 
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βlse   ∈  arg min – , , – ,( ) ( ) ( )
β

β β β
∈ =

( ) +[ ]∑
B

i i i i
i

n

n
y f x h x f x

1 2 2

1

,

where  f  satisfies the convolution equation 

∀ ∀ ∈ξ β1 B:    Eξ β
1 1f x( ),   =  g( ),ξ β1 (10)

and  h  satisfies a similar equation with the function  g2
1( ),ξ β   on the right-hand side.  This estimator was

studied in [7]. 

3.2.  Approximate Adaptive Estimator of the Least Contrast in an Explicit Model of a Special Form.
We give an example of a model where the approximate solution (7) naturally appears due to the fact that the re-
gression function is not smooth.  Assume that  s = 2  in the explicit model (3) and, for fixed  A > 0  and  d > 0,
we have 

g i( ),ξ β0   =  β ξ0 i  ,      β0  ∈ B = [– , ]d d ,    ξi  ≤ A,    i  ≥  1. (11)

Also assume that  { }ε1i   and  { }ε2i   are independent,  E ε1i  = 0,  E ε1
2
i  = σ2 < ∞,  and  ε2i   have the canonical

Laplace distribution with density  p u( ) = e u– 2.  We set 

c i( ),ζ β0   =  g gi i( ) ( ), – ,ξ β ξ β σ0
2 2( ) +   =  ξ β β σi

2
0

2 2( )– + . (12)

To construct an adaptive estimator of the least contrast, it is necessary to solve the convolution equations 

E f i( ),ξ ε β+ 2   =  β ξ  ,      β, ξ  ∈  R , (13)

Eh i( ),ξ ε β+ 2   =  β ξ2 2,      β, ξ  ∈  R . (14)

Since  D iε2  = 2,  the function  h x( , )β  = β2 2 2( )–x   satisfies Eq. (14).  A formal solution of Eq. (13) is ex-

pressed in terms of the Dirac  δ-function as follows: 

f x( , )β   =  β δx x– ( )2( )  ;

indeed, integrating by parts, one can verify that 

ξ ξ+∫ t p t dt p( ) – ( )2   =  ξ ,      ξ ∈ R . (16)

We approximate the  δ-function by the  δ-shaped family  δµ ( )t  = µ ω µ– –( )1 1t ,  t ∈  R  ,  µ > 0,  where  ω  is a

continuous probability density with the bounded support  supp ω = [ – 1, 1 ] .  Then the approximation test in-
volves the following approximation of function (15): 

f xµ β( ),   =  β δµx x– ( )2( ). (17)
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We set 

q y xi iµ β( ), ,   =  y f x h x f xi i i i– ( ), ( , ) – ( , )µ µβ β β( ) +2 2   =  y y f x xi i i i
2 2 22 2– , –( ) ( )µ β β+ . (18)

Let us show that  q µ  satisfies (7) up to a constant factor. 

Lemma 1.  For all  µ > 0,  the following relation is true: 

sup sup , – – –( )
β ξ

µ β ε ξ ε ξ β β σξ
≤ ≤

+ +( )
d A

i iqE 0 1 2
2

0
2   ≤  const ⋅ µ . (19)

Proof.  Let  ỹi  = β ξ ε0 1+ i   and  x̃i = ξ ε+ 2i .  It follows from (18) that 

E q y xi iµ β( )˜ , ˜ ,   =  ξ β β σ β ξ β β ξµ
2

0
2 2

02( ) ( )– – ˜ , –+ ( )E f xi . (20)

Further, taking (16) into account, for  β  ≤ d  we get 

E f xiµ β β ξ( )˜ , –   =  2 2d piEδ ξ ε ξµ( ) ( )–+   ≤  dµ . (21)

The required inequality (19) follows from relations (20) and (21). 

For the special model considered, we now define an approximate adaptive estimator of the least contrast

β  µ  as a measurable solution of the optimization problem (8), where  Zi  = ( , )y xi i   and the function  q  µ  is de-
fined by equality (18).  The direct application of Theorem 2 enables us to establish conditions for the consistency

of the estimator  β µ . 

Theorem 3.  Suppose that relations (11) are satisfied in model (3) and the quantities  ε2i   have the ca-
nonical Laplace distribution.  Also assume that the following conditions are satisfied: 

(A) lim inf –

n
ii

n
n

→∞ =∑1 2
1
ξ   >  0; 

(B) for a certain fixed real  k ≥ 1,  we have  E ε1
4

i
k  < ∞. 

For  χ ∈( , – )/0 1 2k ,  we set 

r  =  
1
2

1 2
4

–
+ χ

k
.

Let  µ = µ( )n  = an r– ,  a > 0,  in the definition of approximate adaptive estimator of the least contrast.  Then
the following assertions are true: 

(a) βµ( )n  → β0   in probability; 

(b) for  k > 3 2/   and  χ ∈( , – )/1 1 2k  ,  we have  βµ( )n  → β0   a.s. 
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Proof.  According to Lemma 1, functions (18) and (12) satisfy relation (7) up to a constant factor on the
right-hand side.  This enables us to apply Theorem 2 to the estimator  βµ( )n .  It is necessary to verify condition

(i) and, for  p = 1,  conditions (iv) and (v). 
According to condition (A), for  n ≥ n0  and  β  ≤ d  we have 

1
0

1
n

c ci i
i

n

( ) ( ), – ,ζ β ζ β[ ]
=
∑   =  ( )–β β ξ0

2 2

1

1⋅
=
∑n i
i

n

  ≥  const ⋅( )–β β0
2 ,

where   const > 0,  and the separability condition (i), where  ρ( )t  = const ⋅ t2 ,  is satisfied. 
Further, we verify condition (iv) for  γ1( )k  = 2 k.  To this end, it suffices to show that, for  µ µ≤ 0,  β ≤ d ,

and  ξ ≤ A ,  we have 

E q y xi i
k

µ β( )˜ , ˜ ,
2

  ≤  
const

µ2k , (22)

where  ỹi   and  x̃i  are defined in the proof of Lemma 1.  To verify inequality (22), we use the inequality

δµ ( )x  ≤ const –1⋅ µ   and the fact that  E ( )ỹi
k2 2   ≤  const  by virtue of condition (B) [see the definition of  q µ  in

(18)]. 

Finally, to verify condition (v) for  γ 2( )k  = 2 k,  it suffices to show that, for  µ ≤ µ 0   and  ξ  ≤ A,  we have 

E sup
˜ , ˜ ,( )

β

µ β
β≤

∂
∂d

i i
kq y x 2

  ≤  
const

µ2k . (23)

Since 

∂
∂

q y xi iµ β
β

( )˜ , ˜ ,
  =  – 2 2 2 22˜ ˜ – ˜ ˜ –( ) ( )y x x xi i i iδ βµ( ) + ,

we can prove inequality (23) by analogy with (22). 

Thus, all conditions of Theorem 2 are satisfied.  Then, in the considered case  δ = k – /1 2, we have 

r  =  
k

k

– –/1 2
2

χ
  =  

1
2

1 2
4

–
+ χ

k

in Theorem 2. 
The assertions of Theorem 3 follow from assertions (a) and (b) of Theorem 2.  Theorem 3 is proved. 

3.3.  Adaptive Estimator of the Least Contrast in an Explicit Model with Regression Function Repre-
sented in the Form of a Ratio.  Assume that  s = 2  in model (3) and  g i( ),ξ β0  = g gi i1 0 2 0( ) ( ), ,ξ β ξ β .  Let us
transform this model into the implicit model (1) with the function  G i( ),ζ β  = g i i2 2 1( ),ζ β ζ⋅  – g i1 2( ),ζ β .  We

set  c i( ),ζ β  = G i
2( ),ζ β   and construct an adaptive estimator of the least contrast according to relation (8).  We
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can solve Eq. (7) in the case where, e.g.,  g2  is a polynomial and  g1  is either a polynomial or a function expo-
nential with respect to  ξi .  If  g2 1( ),ξ β   is separated from zero, then condition (i) with function (9) is satisfied if

∀ ≥ ( )
=
∑n

n
g gi i

i

n

1
1

0
2

1

: , – ,( ) ( )ξ ξβ β   ≥  L ⋅ β β– 0
2 ,      L  >  0.

3.4.  Approximate Adaptive Estimator of the Least Contrast of the  L1  Type.  Consider model (3) for
s = 2.  Within the framework of the  L1-approach, two cases of approximate adaptation are possible. 

Let  ε2i   have the canonical Laplace distribution.  The first estimator is based on the consistent  L1-estima-
tion in the classical nonlinear regression.  The function of contrast has the form  c i0( ),ξ β  = Eβ ξ β

0
y gi i– ,( )

and the convolution equation is as follows: 

Eζ ζ β
i
q xi i( ), ,1   =  ζ ξ β1i ig– ,( ) .

The function  c0   generates a contrast  Cn   satisfying condition (i), where  ρ( )t  = at2 ,  a > 0  [9]. 
Now let  { , }ε ε1 2i i   be independent and identically distributed according to the canonical Laplace distribu-

tion.  The second estimator is based on the function of contrast  c i( ),ξ β  = g gi i( ) ( ), – ,ξ β ξ β0 .  The convolu-
tion equation has the form  Eζ β β

i
q x yi i, ( ), ,

0
 = c i( ),ξ β .  In the separability condition (i), we set  ρ( )t  = at,

a > 0. 
For both estimators, the convolution equations are only approximately solvable in the sense of (7). 
The proofs of Theorems 1 and 2 are based on the Whittle inequality [10] and can be found in [11], where

Examples 3.1, 3.3, and 3.4 are investigated in more detail. 
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