
Theory of Stochastic Processes
Vol.7 (23), no.1-2, 2001, pp.215-230

ALEXANDER G. KUKUSH AND DMITRII S. SILVESTROV

SKELETON APPROXIMATIONS OF OPTIMAL

STOPPING STRATEGIES FOR AMERICAN TYPE
OPTIONS WITH CONTINUOUS TIME12

American type options are studied for continuous pricing processes.
The skeleton type approximations are considered. The explicit upper
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1. Introduction

Traditional methods of option pricing are based on models of pricing
processes which are various modifications of the classical model of geomet-
rical Brownian motion. Stochastic differential equations can be written
down for such pricing processes. Then partial differential equations and
the corresponding variational problems can be derived for functions which
represent optimal strategies, see for instance Øksendal (1992), Duffie (1996)
and Karatzas and Shreve (1998). Finally various numerical algorithms can
be applied to find optimal strategies for continuous time models and their
discrete time approximations. The extended survey of latest results can be
found in the book edited by Rogers and Talay (1998), in particular in the
paper by Broadie and Detemple (1998).

We do prefer to use an alternative approach for evaluation of optimal
stopping Buyer strategies for American type options. The structure of opti-
mal stopping strategies is investigated by applying of the direct probabilistic
analysis under general assumptions for underlying pricing processes.

1The paper represents a part of an invited lecture.
2This work is supported in part by the project “Stochastic modelling of insurance and

finance processes and systems” funded by the Knowledge Foundation.
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In the papers by Kukush and Silvestrov (2000a, 2000b) the structure
of optimal stopping strategies were investigated for a general model of dis-
crete time pricing processes and pay-off functions. The model of pricing
process is a two component inhomogeneous in time Markov process with a
phase space [0,∞)× Y . The first component is the corresponding pricing
process and the second component (with a general measurable phase space
Y ) represents some stochastic index process controlling the pricing process.
Pay-off functions under consideration are in sequel: (a) an inhomogeneous
in time analogue of a standard one gn(x) = an[x−Kn]+; (b) piecewise linear
convex functions, and finally (c) general convex functions.

At present paper we study skeleton type approximations for continuous
time pricing processes. The explicit upper bounds are given for the step of
discretisation for ε-optimal stopping strategies. These upper bounds enable
us to use the results given in Kukush and Silvestrov (2000a, 2000b) for
constructive description of ε-optimal stopping strategies for American type
options with continuous time. The special attention is paid to the case of
general model of pricing processes which are geometrical diffusion processes
controlled by stochastic index processes.

We think that the main advantage of direct probabilistic approach in
structural studies of optimal stopping strategies is that this approach is
much more flexible and less sensitive to the modifications of models of un-
derlying pricing processes, pay-off functions and other characteristics of the
models.

The knowledge of the explicit structure of optimal stopping strategies is
the base for the creation of effective optimising Monte Carlo pricing algo-
rithms for numerical evaluation of the corresponding optimal strategies.
Such algorithms and programs have been elaborated by Silvestrov, Ga-
lochkin and Sibirtsev (1999). We would like also to refer to the papers
by

We would like to refer to the book by Shiryaev (1978) and the paper
by Shiryaev, Kabanov, Kramkov, and Mel’nikov (1994), which stimulated
the present research. We also refer to the paper by Kukush and Silvestrov
(1999), where part of the current results was presented without the proofs.

2. Skeleton approximations for American type options in

continuous time

Consider a two component inhomogeneous in time Markov process Zt =
(St, It), t ≥ 0, with a phase space Z = [0,∞)×Y . Here (Y,BY ) is a general
measurable space and as usual we consider Z as a measurable space with
the σ–field BZ = σ(B+ × BY ) where B+ is a Borel σ–field on R+ = [ 0,∞).

We assume that Zt, t ≥ 0 is a measurable process ( Zt(ω), t ≥ 0 are
BZ –measurable functions with respect to (t, ω) ). Without loss of generality
we assume that Z0 = (S0, I0) is a non-random value in Z.

We interpret the first component St as a pricing process and the second
component It as a stochastic index process controlling the pricing process.
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A basic example of the model described above is the pricing process
given in the following form:

St = S0 · exp{
t∫

0

(a(u, Iu)−
1

2
σ(u, Iu)

2)du +

t∫
0

σ(u, Iu)dw(u)}, t ≥ 0,

where (a) a(t, y) and σ(t, y) ≥ 0 are measurable real-valued functions de-
fined on Z, (b) It, t ≥ 0 is a measurable inhomogeneous in time Markov
process such that functions E|a(t, It)| and Eσ(t, It)

2 are integrable at fi-
nite intervals and w(u), u ≥ 0 is the Wiener process independent of process
It, t ≥ 0, (d) Z0 = (S0, I0) is a non-random value in Z.

In this case vector process Zt = (St, It), t ≥ 0 is an inhomogeneous
Markov process with the first component St, t ≥ 0 is a continuous geomet-
rical diffusion process controlled by the index process It, t ≥ 0.

Let Ft, t ≥ 0 be a flow of σ–fields, associated with process Zt, t ≥ 0.
We shall consider Markov moments τ with respect to Ft. It means that τ
is a random value distributed in [0,∞] and with the property {ω : τ(ω) ≤
t} ∈ Ft, t ≥ 0.

Introduce further a pay-off function g(x, t), x ∈ R+, t ≥ 0. We assume
that g(x, t) is a nonnegative measurable function. Let also Rt, t ≥ 0 be
a nondecreasing function with R0 = 0. Typically Rt =

∫ t

0
r(s)ds, where

r(s) ≥ 0 is a Borel function representing riskless interest rate at moment s.
The typical example of pay-off function is:

g(x, t) = at [x−Kt]+ =

{
at (x−Kt), if x > Kt,

0, if 0 ≤ x ≤ Kt,

where at, t ≥ 0 and Kt, t ≥ 0 are two nonnegative measurable functions.
The case, where at = a and Kt = K do not depend on t, corresponds to the
standard American call option.

We fix parameter T > 0 which we call an expiration date. It is convenient
to operate with the transformed pricing process Sg(t) = e−Rtg(St, t), t ≥ 0.
Let us formulate conditions which we impose on pricing processes and pay-
off functions:

A: Sg(t), t ≥ 0 is a.s. continuous from the right process.

B: E sup
0≤t≤T

Sg(t) < ∞.

Let denote Mmax,T the class of all Markov moments τ ≤ T . Let now
choose a partition Π = {0 = t0 < t1 < . . . tN = T} of interval [0, T ]. We
also consider the class M̂Π,T of all Markov moments from Mmax,T which
only take the values t0, t1, . . . tN , and the class MΠ,T of all Markov moments

from M̂Π,T such that event {ω : τ(ω) = tk} ∈ σ[Z0, . . . Ztk ] for k = 0, . . . N .
By definition

MΠ,T ⊆ M̂Π,T ⊆Mmax,T . (1)
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The goal functional under consideration is:

Φg(τ) = Ee−Rτ g(Sτ , τ). (2)

Denote for a class of Markov moments MT ⊆Mmax,T

Φg(MT ) = sup
τ∈MT

Ee−Rτ g(Sτ , τ). (3)

Conditions A, B and relation (1) imply that

Φg(MΠ,T ) ≤ Φg(M̂Π,T ) ≤ Φg(Mmax,T ) < ∞. (4)

Random variables Zt0 , Zt1, . . . ZtN are connected in an inhomogeneous
Markov chain with discrete time. The optimisation problem (2)-(3) for the
class MΠ,T is a problem of optimal pricing for American type options with
discrete time.

In Kukush and Silvestrov (2000a, 2000b) the structure of optimal and
ε-optimal stopping moments in the class MΠ,T is described for various
classes of convex in x pay-off functions g(x, tk), k = t0, . . . tN . Also, op-
timising Monte Carlo algorithms and programs for numerical evaluation of
optimal stopping strategies, functionals Φg(MΠ,T ) and other functionals for
standard American options with discrete time are described in Silvestrov,
Galochkin and Sibirtsev (1999).

Our goal is to show in which way the functional Φg(Mmax,T ) can be ap-
proximated by functionals Φg(MΠ,T ) and to give explicit upper bounds for
the accuracy of this approximation. This makes it possible to find stopping
moments τε ∈ MΠ,T that are 2ε-optimal stopping moments in the class
Mmax,T .

The next important statement is a base of skeleton approximation.

Lemma 1. For every partition Π = {0 = t0 < t1 < . . . < tN = T} of
interval [0, T ] and for the classes MΠ,T and M̂Π,T of Markov moments

Φg(MΠ,T ) = Φg(M̂Π,T ). (5)

Proof. Consider the optimization problem (2)-(3) for the class M̂Π,T as a
problem of optimal pricing for American type options with discrete time.
For this purpose add to the random variables Ztn additional components
Z̄tn = {Zt, tn−1 < t ≤ tn} with the phase space Z(tn−1,tn] endowed by
cylindrical σ- field. Consider the extended Markov chain In = (Ztn , Z̄tn).
As is known (Shiryaev (1978)) the optimal stopping moment τ exists in
any discrete time model, and it has the form of the first hitting time τ =
min{0 ≤ n ≤ N : In ∈ Dn}, where optimal stopping domains Dn are
determined by the transition probabilities of Markov chain In. However,
in this case the transition probabilities depend only on values of the first
component Ztn . This case was considered in the papers by Kukush and
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Silvestrov (2000a, 2000b). To imbed the model described above in the
model introduced in these papers one should to consider the two component
Markov chain (Sn, In) with the components Sn = Stn , In = (Ztn , Z̄tn). The
first component Sn is in this case completely determined by the component
Ztn = (Stn , Itn) while, as was pointed out above, transition probabilities of
Markov chain In do depend only of the values of the first component Ztn . As
was shown in Kukush and Silvestrov (2000a, 2000b) in this case the optimal
stopping moment has the the form of the first hitting times for the process
(Stn , Ztn) and do not depend on the component Z̄tn . Since Stn is determined
by Ztn this moment can by represented in the form τ = min{0 ≤ n ≤ N :
Ztn ∈ D′

n}, i.e. as the first hitting time for the Markov Chain Ztn .
Therefore for the optimal stopping moment τ ∈ MΠ,T . Hence

Φg(MΠ,T ) ≥ Φg(M̂Π,T ), and by (4) we obtain equality (5).
⊕

For any Markov moment τ ∈ Mmax,T and a partition Π = {0 = t0 <
t1 < . . . < tN = T} one can define the discretisation of this moment

τ [Π] =

{
0, if τ = 0,
tk, if tk−1 < τ ≤ tk, k = 1, . . . N.

Now, let τε be ε-optimal stopping moment in the class Mmax,T , i.e.

ESg(τε) ≥ Φg(Mmax,T )− ε. Since τε[Π] ∈ M̂Π,T the relation (5) implies

ESg(τε[Π]) ≤ Φg(M̂Π,T ) = Φg(MΠ,T ) ≤ Φg(Mmax,T ). (6)

Denote d(Π) = max{tk − tk−1, k = 1, . . .N}. Let also ΠN = {0 = t0N <
t1N < . . . tNN = T} be a sequence of partitions such that d(ΠN) → 0 as
N →∞.

By definition τε ≤ τε[ΠN ] ≤ τε + d(ΠN). That is why condition A
implies that random variables Sg(τε[ΠN ]) → Sg(τε) as N → ∞ almost
surely. This relation, condition B and Lebesgue theorem easily implies that
ESg(τε[ΠN ]) → ESg(τε) ≥ Φg(Mmax,T ) − ε as N → ∞. Since ε can be
chosen arbitrary small the last relation and (6) implies in an obvious way
that under conditions A and B

lim
N→∞

Φg(MΠN ,T ) = Φg(Mmax,T ). (7)

Relation (7) gives the base for the use of skeleton discrete time approx-
imation for continuous time model. This relation guarantees that for any
fixed ε > 0 there exists N = Nε such that Φg(Mmax,T )− Φg(MΠNε ,T ) ≤ ε.
Let τ ′

ε be an ε-optimal stopping moment in the class MΠNε ,T , i.e. ESg(τ
′
ε) ≥

Φg(MΠNε ,T )−ε. Obviously τ ′
ε is a 2ε-optimal stopping moment in the class

Mmax,T .
However, relation (7) does not give quantitative estimates which connect

the maximal step of the partition d(ΠN) with ε. Such estimates can be
obtained with the use of inequality (6).
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For a separable process S(t), t ≥ 0 the modulus of continuity on the
interval [0, T ] is defined in the following way:

∆h,T (S(·)) = sup
t′,t′′,∈[0,T ],|t′−t′′|≤h

|S(t′)− S(t′′)|, h > 0.

Condition B implies that E∆h,T (S(·)) < ∞ for all h > 0. Note also that
E∆h,T (S(·)) monotonically does not decrease in h > 0.

Let us assume the following condition:

C: E∆h,T (Sg(·)) → 0 as h → 0.

Under minimal assumption of separability of the process Sg(t), t ≥ 0 con-
dition C implies that this process is an a.s. continuous process. Therefore
condition A holds.

Let τε be ε-optimal stopping moment in the class Mmax,T . Then in-
equality (6) and the relation τε ≤ τε[ΠN ] ≤ τε + d(ΠN) imply that

Φg(Mmax,T )− Φg(MΠN ,T ) ≤ ε + ESg(τε)− ESg(τε[ΠN ]) ≤ (8)

≤ ε + E
∣∣∣Sg(τε)− Sg

(
τε[ΠN ]

)∣∣∣ ≤ ε + E∆d(ΠN ),T

(
Sg(·)

)
.

Since ε can be chosen arbitrary small relation (8) implies finally that

Φg(Mmax,T )− Φg(MΠN ,T ) ≤ E ∆d(ΠN ),T (Sg (·)) . (9)

Condition C implies that there exists h = hε such that E∆hε,T (Sg(·)) ≤
ε. Since d(ΠN) → 0 as N → 0 there exists N = Nε such that d(ΠNε) ≤ hε.
Let τ ′

ε be an ε-optimal stopping moment in the class MΠNε ,T . Then (9)
implies that τ ′

ε is a 2ε-optimal stopping moment in the class Mmax,T .

So, the problem is reduced to solving with respect to h the following
inequality:

E ∆h,T (Sg(·)) ≤ ε. (10)

In the next section we give explicit upper bounds for the expectation of
the modulus of continuity E∆h,T (Sg(·)) in terms of moments of increments
of the transformed pricing processes Sg(t), t ≥ 0 and link explicitly the
parameters h and ε.
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3. Upper bounds for expectation of the modulus of

continuity

Let S(t), t ≥ 0 be a separable real-valued process. We assume that the
following condition holds:

D: E|S(t′) − S(t′′)|m ≤ H|t′ − t′′|r, 0 ≤ t′, t′′ ≤ T for some H > 0 and
m, r > 1.

We use estimates for tail probabilities for the modulus of continuity given
in Gikhman and Skorokhod (1974). However, we estimate the expectation
for the modulus of continuity and give the upper bounds with explicit con-
stants due to detailed technical account at all steps of calculations.

Lemma 2. (Gikhman and Skorokhod (1974)). Let S(t), t ∈ [0, T ] be a
separable process, such that there exist nonnegative, nondecreasing function
g(h) and function q(C, h), C > 0, h > 0, with

P{|S(t + h)− S(t)| > Cg(h)} ≤ q(C, h), (11)

and

G =
∞∑

n=0

g(T/2n) < ∞, Q(C) =
∞∑

n=1

2nq(C, T/2n) < ∞. (12)

Then for each δ > 0

P{ sup
0≤t′, t′′≤T

|S(t′)− S(t′′)| > δ} ≤ Q(δ/2G), (13)

and for each ε > 0, C > 0

P{∆ε,T (S(·)) > CG([log2 T/2ε])} ≤ Q([log2 T/2ε], C), (14)

where

G(p) =

∞∑
n=p

g(T/2n), Q(p, C) =

∞∑
n=p

2nq(C, T/2n). (15)

Lemma 3. Let condition D holds. Then S(t), t ∈ [0, T ] is a.s. continuous
process and for every 1 < r′ < r and for every 0 < h ≤ T :

E ∆h,T (S(·)) ≤ B1h
r−1
m , (16)

where

B1 =
m

m− 1
2

r−1
m (1− 2−

r′−1
m )−1 (1− 2−(r−r′))−

1
m H

1
m T

1
m . (17)

Proof. Apply Lemma 2 to the process S(t). Fix a positive number r′ < r

and set g(h) = h
r′−1

m . Find G(p), q(C, h) and Q(p, C) defined in (15), (11)
and (12).

G(p) = T
r′−m

m 2−
p(r′−1)

m (1− 2−
r′−1

m )−1 ,
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therefore

G ([log2

T

2ε
]) ≤ 2

r′−1
m ε

r′−1
m (1− 2−

r′−1
m )−1.

We have by D:
P{|S(t + h)− S(t)| > C g(h)} ≤

E |S(t + h)− S(t)|m
Cm gm(h)

≤ H

Cm
h1+r−r′ := q(C, h),

and

Q(p, C) =
H T 1+r−r′

Cm
2−p(r−r′) (1− 2−(r−r′))−1.

Then

Q ([log2

T

2ε
], C) ≤ C−m T H εr−r′ (1− 2−(r−r′))−1 · 2r−r′.

By (14) we obtain

P{∆ε,T

(
S(·)
)

> C 2
r′−1

m ε
r′−1

m (1− 2−
r′−1

m )−1} ≤

≤ C−m T H εr−r′ (1− 2−(r−r′))−1 · 2r−r′.

Denote
δ = C 2

r′−1
m ε

r′−1
m (1− 2−

r′−1
m )−1.

Then

P{∆ε,T (S(·)) > δ} ≤ TkHεr−1

δm
,

where
k = 2r−1 (1− 2−

r′−1
m )−m (1− 2−(r−r′))−1.

Next,

E ∆h,T

(
S(·)
)

=

∞∫
0

P{∆h,T

(
S(·)
)

> v}dv ≤
(T k H)

1
m h

r−1
m∫

0

dv+

+

∞∫
(T k H)

1
m h

r−1
m

T k H hr−1

vm
dv =

m

m− 1
(T k H)

1
m h

r−1
m = B1 h

r−1
m ,

where B1 is given by (17). Inequality (16) is proved.
Finally, for a separable process S(t) condition D implies continuity of

the paths, see Gikhman and Skorokhod (1974).
⊕

Corollary. Let condition D holds. Then for every 0 < u < m, 0 < r′ < r

E( sup
0≤t′, t′′≤T

|S(t′)− S(t′′) |u) ≤ m

m− u
k1 H

u
m T

ru
m , (18)
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where
k1 = 2u (1− 2−

r′−1
m )−u (2r−r′ − 1)−

u
m .

Proof. Use (13) for the process S(t). Let again g(h) = h
r′−1

m , 0 < r′ < r,

and q(C, h) =
H

Cm
h1+r−r′ . Then according to (12)

G = T
r′−1

m (1− 2−
r′−1

m )−1, Q(C) =
H

Cm
T 1+r−r′ (2r−r′ − 1)−1.

Now,

Q(δ/2G) = k0
H T r

δm
,

where
k0 = 2m (1− 2−

r′−1
m )−m (2r−r′ − 1)−1.

By (13) we have

P{ sup
0≤t′, t′′≤T

|S(t′)− S(t′′) | > δ} ≤ k0 H T r

δm
,

and

E( sup
0≤t′, t′′≤T

|S(t′)− S(t′′) |u) =

∞∫
0

P{ sup
0≤t′, t′′≤T

|S(t′)− S(t′′) | > v
1
u}dv

≤
A∫

0

dv +

∞∫
A

k0 H T r

v
m
u

dv.

Choose A from the condition k0 H T r A−m
u = 1. After straightforward

calculation we obtain

E( sup
0≤t′, t′′≤T

|S(t′)− S(t′′) |u) ≤ m

m− u
(k0 H T r)

u
m =

m

m− u
k1 H

u
m T

ru
m ,

and (18) is proved.
⊕

Lemma 3, applied to the transformed pricing processes Sg(t), yields the
explicit solution in (10) and links parameters h and ε.

For example we get by substituting the corresponding upper bound

in (10) the stronger inequality B1h
r−1
m ≤ ε, which guarantees that hε =

(ε/B1)
m

r−1 is the solution of (10). In sequel, if a partition ΠNε is chosen in
such a way that the maximal step d(ΠNε) ≤ (ε/B1)

m
r−1 then any a ε-optimal

stopping moment τ ′
ε in the class MΠNε ,T will be a 2ε-optimal stopping mo-

ment in the class Mmax,T .
Sometimes it is not convenient to apply Lemma 1 to the transformed

pricing process Sg(t) and it would be better to have similar estimates given
in terms of increments of the pricing process St itself. Such estimates can
be obtained in the case of smoothed pricing functions.
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Let again S(t), t ≥ 0 be a separable real-valued process for which the con-
dition D holds. Let also G(x, t) be a measurable real-valued function defined
on R×R+. We consider the transformed process SG(t) = G(S(t), t), t ≥ 0.

In the case of pricing processes transformation function is G(x, t) =
e−Rtg(x, t) and the transformed pricing process is Sg(t) = e−Rtg(St, t), t ≥ 0.

In general case we do not make any assumptions about structure of
transformation function G(x, t). We assume only the following smoothness
condition, which links the order of smoothness for function G(x, t) with the
parameter r in condition D:

E: (a) G(x, t) is absolutely continuous upon x for every fixed t ≥ 0 and

upon t for every fixed x ∈ R; (b) for every x ∈ R function |∂G(x,t)
∂t

| ≤
K1|x|p1 for almost all t ∈ [0, T ] with respect to Lebesgue measure,
where K1 > 0 and 0 ≤ p1 < r; (c) for every t ∈ [0, T ] function

|∂G(x,t)
∂x

| ≤ K2|x|p2 for almost all x ∈ R with respect to Lebesgue
measure, where K2 > 0 and 0 ≤ p2 < r − 1.

Condition E guarantees the existence of the moments of the order m for
increments of the process S(t). Since nonlinear character of transformation
function G(x, t) we need also the following condition:

F: E |S(0)|m < ∞.

In Lemma 3 an additional parameter 1 < r′ < r was involved. Here we
need to involve another additional parameter 1 < q < r′. Let denote:

B2 =
m

m− q
2

m+r−2q
m (1− 2−

r′−q
m )−1 (1− 2−

r−r′
q )−

q
m× (19)

×T
q
m{K

m
q

1 M1 (p1m/q) T
m−r

q + K
m
q

2 (M2(p2m/(q − 1)))
q−1

q H
1
q }

q
m ,

where

M1 (u) = 2[u−1]+ · (E |S(0)|u + H
u
m T

ru
m ),

M2 (u) = 2[u−1]+ ·{E |S(0)|u+
m

m− u
2u(1−2−

r′−1
m )−u (2r−r′−1)−

u
m H

u
m T

ru
m }.

Lemma 4. Let conditions D with m ≥ r > 1 and E–F hold. Then for
every q and r′ such that p2 + 1 < q < r′ < r, p1 ≤ q and every 0 < h ≤ T :

E ∆h,T (SG(·)) ≤ B2h
r−q
m .

Proof. Assumption E implies

|G(St , t)−G(Ss , s)| ≤ |G(St , t)−G(St , s)| + |G(St , s)−G(Ss , s)| ≤

≤ K1 |St|p1 |t− s| + K2 sup
t∈ [0,T ]

|St|p2 |St − Ss|.
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Let q and r′ satisfy the conditions of Lemma 4. Then

E|G(St , t)−G(Ss , s)|
m
q ≤ 2

m
q
−1 {K

m
q

1 |t− s|
m
q E |St|

mp1
q +

+K
m
q

2 (E |St − Ss |m)
1
q (E sup

t∈[0,T ]

|St|
p2m
q−1 )

q−1
q }. (20)

Now, by D we have for 0 ≤ u ≤ m:

E|St|u ≤ 2[u−1]+ × {E|S(0)|u + (E|S(t)− S(0)|m)
u
m} ≤ M1 (u), (21)

and by D and Corollary for 0 ≤ u < m :

E sup
t∈ [0,T ]

|St|u ≤ 2[u−1]+ × {E
∣∣S(0)|u + E sup

t∈ [0,T ]

|S(t)− S(0)
∣∣u} ≤

≤ 2[u−1]+ × {E|S(0)|u +
m

m− u
k1 H

u
m T

ru
m } = M2 (u). (22)

¿From (20) – (22) we obtain

E|G(St , t)−G(Ss , s)|
m
q ≤ H1|t− s|

r
q , (23)

where

H1 = 2
m
q
−1{K

m
q

1 T
m−r

q M1(mp1/q) + K
m
q

2 H
1
q [M2(mp2/(q − 1))]

q−1
q }.

Finally, by Lemma 3 and inequality (23) we get

E ∆h,T (SG(·)) ≤ B1 (m/q, r/q, H1) h( r
q
−1) (m

q
)−1

= B1(m/q, r/q, H1) h
r−q
m .
(24)

Here B1(m/q, r/q, H1) is obtained from B1, which is given in (17), by
substitution m/q, r/q and H1 instead of m, r and H , respectively; we
substitute also in (17) r′/q instead of r′. We have

B1(m/q, r/q, H1) =
m

m− q
2

r−q
m (1− 2−

r′−q
m )−1×

×(1− 2−
r−r′

q )−
q
m × H

q
m
1 T

q
m = B2. (25)

Now, (24) and (25) imply that

E ∆h,T

(
SG(·)

)
≤ B2 h

r−q
m .

Lemma 4 is proved.
⊕

4. Skeleton approximations for the basic example
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Let us illustrate the possible application of Lemmas 3 and 4 to the model
where the pricing process St, t ≥ 0 is given in the form:

St = S0 · exp{
t∫

0

(a (u, Iu)−
1

2
σ(u)2) du +

t∫
0

σ(u) dw(u)}, t ≥ 0,

where (a) a(t, y) is a measurable real-valued functions defined on Z, (b)
σ(t) ≥ 0 is a measurable real-valued functions defined on R+, (c) It, t ≥ 0
is a measurable inhomogeneous in time Markov process, (d) w(u), u ≥ 0 is
the Wiener process independent of process It, t ≥ 0, (e) Z0 = (S0, I0) is a
non-random value in Z.

In this case vector process Zt = (St, It), t ≥ 0 is an inhomogeneous
Markov process with the first component St, t ≥ 0 is a continuous geomet-
rical diffusion process controlled by process It, t ≥ 0.

We assume the following condition:

G: (a) A = sup
0≤t≤T, y∈Y

|a(t, y)− 1

2
σ(t)2| < ∞; (b) B = sup

0≤t≤T
σ(t) < ∞.

Lemma 5. Let condition G holds. Then for any m > 2

E |St′ − St′′ |m ≤ Hm |t′ − t′′|m/2, 0 ≤ t′, t′′ ≤ T,

where

Hm =
1

2
(2S0 eAT+ 1

2
mB2 T T− 1

2 )m ((eAT − 1)m + E |eBT
1
2 N(0,1) − 1|m).

Proof. Fix m > 2 and denote b(t, y) = a(t, y)− 1
2
σ(t)2, 0 ≤ t ≤ T, y ∈ Y .

We suppose that S0 > 0. Then for every t ∈ [0, T ] St > 0 a.s. Fix t ∈ [0, T ]
and positive h, such that t + h ∈ [0, T ]. Consider the increment

|St+h − St| = St · | exp{
t+h∫
t

b(u, Iu) du +

t+h∫
t

σ(u) dw(u)} − 1| ≤

≤ St · {exp(

t+h∫
t

σ(u) dw(u))× (eAh − 1) + | exp
( t+h∫

t

σ(u) dw(u))− 1|}.

Now, St ≤ S0e
AT · exp(

t∫
0

σ(u) dw(u)). Therefore

|St+h − St|
S0eAT

≤ exp{
t+h∫
0

σ(u) dw(u)} × (eAh − 1)
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+ exp{
t∫

0

σ(u) dw(u)} × | exp{
t+h∫
t

σ(u) dw(u)} − 1|.

Then

E|St+h − St

S0eAT
|m ≤ 2m−1 (eAh − 1)m · E exp{m

t+h∫
0

σ(u) dw(u)}+

+ 2m−1 · E exp{m
t∫

0

σ(u) dw(u)} · E| exp{
t+h∫
t

σ(u) dw(u)} − 1 |m. (26)

For each t ∈ [ 0, T ] we have

E exp{m
t∫

0

σ(u) dw(u)} = exp{m2

2
·

t∫
0

σ2(u) du} ≤ e
m2B2T

2 . (27)

The inequality |eαz − 1| ≤ |eβz − 1|, 0 ≤ α ≤ β, z ∈ R, implies

E| exp{
t+h∫
t

σ(u) dw(u)}−1|m = E| exp{(
t+h∫
t

σ2(u) du)
1
2 ×N(0, 1)}−1|m ≤

≤ E|eB
√

h·N(0,1) − 1|m ≤ (
√

h/T )m× E|eB
√

T ·N(0,1) − 1|m. (28)

Here we used the inequality

|ehz − 1| ≤ h

T
|eTz − 1|, 0 < h ≤ T, z ∈ R, (29)

which follows from the convexity of the exponential function. From (26) –
(29) we obtain finally

E|St+h − St

S0 eAT
|m ≤ (

h

T
)

m
2 2m−1×e

1
2
m2B2T{ (eAT −1)m +E |eB

√
T ·N(0,1)−1|m },

and
E|St+h − St|m ≤ Hm h

m
2 .

This completes the proof.
⊕

So, condition D holds and Lemma 4 can be applied to the pricing process
St, t ≥ 0 if condition E holds for the transformation function G(x, t) =
e−Rtg(x, t).

Consider the case of standard American option. Here the transformation
function

G(x, t) = e−r̃t [x−K]+, x ≥ 0, 0 ≤ t ≤ T,
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where r̃ > 0, K > 0.
Let us apply Lemmas 4 and 5.
For m > 2 we have

E |St′ − St′′ |m ≤ Hm |t′ − t′′|m/2, 0 ≤ t′, t′′ ≤ T,

where Hm is given in Lemma 5. Thus D holds with m > 2, r = m
2
, H = Hm.

Now, check the condition E. We have

|∂G(x, t)

∂t
| ≤ r̃, |∂G(x, t)

∂x
| ≤ 1

(except the point x = K), therefore E holds with p1 = p2 = 0, k1 = r̃, k2 =
1.

Fix q and r′ such that 1 < q < r′ < m
2
. By lemma 4 we have

E ∆h,T (SG(·)) ≤ B2 h
1
2
− q

m ,

where B2 is given by (19), with r = m
2
, K1 = r̃, K2 = 1, H = Hm, p1 =

p2 = 0, M1(0) = M2(0) = 2.
According to (9)

Φg(Mmax,T )− Φg(MΠN ,T ) ≤ B2 d(ΠN)
1
2
− q

m ≤ ε,

if d(ΠN) ≤ (ε/B2)
α , with α = (1

2
− q

m
)−1.

To find Φg(MΠN ,T ) one can apply the results given papers Kukush and
Silvestrov (2000a, 2000b). Let

ΠN = {0 = t0 < t1 < ... < tN = T} .

In order to imbed the model in those considered in these papers one
should consider the two component Markov chain (Sn, In = (I ′

n, I ′′
n)), where

Sn = Stn , I ′
n = Itn , I ′′

n = exp{
tn∫

tn−1

(a(u, Iu)−
1

2
σ(u)2)du +

tn∫
tn−1

σ(u)dw(u)}.

Let rk = r̃(tk+1 − tk), k = 0, 1, ..., N − 1, R0 = 0, Rn = r0 + r1 + ... +
rn−1, n = 1, 2, ..., N .

The functional Φg(τ) defined in (2) for τ ∈ MΠN ,T coincides with the
functional

Φg(τ) = E e−Rτ [Sτ −K]+ (30)

introduced in Kukush and Silvestrov (2000a, 2000b) for the discrete Markov
chain (Sn, In).

It follows from the formulas, which define Markov chain (Sn, In) that
the first component can be given in the following dynamical form Sn =
Sn−1 ·I ′′

n. Also it is obvious that component In is also a Markov chain and it’s
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transition probabilities depend only of the first component I ′
n. That is why

a conditions A-C used in Kukush and Silvestrov (2000a, 2000b) obviously
hold. In particular the dynamical transition function A(x, (y′, y′′)) = x · y′,
which is derived from the formula Sn = A(Sn−1, In) = Sn−1 · I ′′

n, is convex
and continuous in x for every (y′, y′′).

Assume additionally that

H: D = sup
0≤t≤T, y∈Y

a(t, y) < r̃.

Condition condition implies that condition D, introduced in Kukush and
Silvestrov (2000a, 2000b), holds with an ≡ 1 (recall that we consider the
case of standard American option). Really, for each x > 0

1

x
E{Stn+1/Stn = x, Itn = y} =

E{exp{
tn+1∫
tn

(a(u, Iu)−
1

2
σ(u)2)du +

tn+1∫
tn

σ(u)dw(u)}/Itn = y} =

E{exp{
tn+1∫
tn

a(u, Iu)du}/Itn = y} ≤ eD (tn+1−tn) < ern.

Therefore Theorem 2 from Kukush and Silvestrov (2000a, 2000b) is ap-
plicable now, and the structure of τopt ∈ MΠN ,T for the functional (30) is
given in that theorem.

Remark also that if to replace H by

I: E{a(u, Iu)/It = y} ≥ r̃, for each 0 ≤ t ≤ u ≤ T, y ∈ Y ,

then for x > 0, t < s:

1

x
E{Stn+1/Stn = x, Itn = y} =

E{exp{
tn+1∫
tn

(a(u, Iu)−
1

2
σ(u)2)du +

tn+1∫
tn

σ(u)dw(u)}/Itn = y} =

= E{exp{
tn+1∫
tn

a(u, Iu)du}/Itn = y} ≥ er̃ (s−t),

and the process Vt = e−r̃t[St−K]+, 0 ≤ t ≤ T is a submartingale (compare
with the proof of Theorem 4 from Kukush and Silvestrov (2000a)). There-
fore under I for the functional (2) in the class Mmax,T we have τopt = T .

The cases of American type options with linear convex pay-off functions
and with general convex pay-off functions can be considered by similar way
with the use of corresponding results given in Kukush and Silvestrov (2000a,
2000b).
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